Formula One car

A modern Formula One car is a single-seat, open cockpit, open wheel racing car with substantial front and rear wings, and an engine positioned behind the driver. The regulations governing the cars are unique to the championship. The Formula One regulations specify that cars must be constructed by the racing teams themselves, though the design and manufacture can be outsourced.[1]



A BMW Sauber P86 V8 engine, which powered the 2006 BMW Sauber F1.06.

The 2006 Formula One season saw the Fédération Internationale de l'Automobile (FIA) introduce the current engine formula, which mandated cars to be powered by 2.4 litre naturally aspirated engines in the V8 engine configuration, with no more than four valves per cylinder.[2] Further technical restrictions, such as a ban on variable intake trumpets, have also been introduced with the new 2.4 L V8 formula to prevent the teams from achieving higher RPM and horsepower too quickly. The 2009 season limited engines to 18,000 rpm, in order to improve engine reliability and cut costs.[2]

For a decade F1 cars had run with 3.0 litre naturally aspirated V10 engines; however, development had led to these engines producing between 980 and 1,000 hp (730 and 750 kW), and reaching top speeds of 370 km/h (230 mph) on the Monza circuit.[3] Teams started using exotic alloys in the late 1990s, leading to the FIA banning the use of exotic materials in engine construction, and only aluminium and iron alloys were allowed for the pistons, cylinders, connecting rods, and crankshafts.[2] The FIA has continually enforced material and design restrictions to limit power, otherwise the 3.0 L V10 engines would easily have exceeded 22,000 rpm[citation needed] and well over 1,000 hp (745 kW)[citation needed]. Even with the restrictions the V10s in the 2005 season were reputed to develop 980 hp (730 kW), which were reaching power levels not seen since the ban on turbo-charged engines in 1989.[3]

The lesser funded teams (the former Minardi team spends less than 50 million, while Ferrari spent hundreds of millions of euros a year developing their car) had the option of keeping the current V10 for another season, but with a rev limiter to keep them from being competitive with the most powerful V8 engines. The only team to take this option was the Toro Rosso team, which was the reformed and regrouped Minardi.

The engines produce over 100,000 BTU/min (1,750 kW)[citation needed] of heat which is dissipated via radiators and the exhaust, which can reach temperatures over 1,000 °C (1,830 °F).[citation needed] They consume around 450 l (15.9 ft3) of air per second.[4] Race fuel consumption rate is normally around 75 l/100 km travelled (3.1 US mpg, 3.8 UK mpg, 1.3 km/l). Nonetheless a Formula One engine is over 20% more efficient at turning fuel into power than most small commuter cars, considering their craftsmanship[citation needed].

All cars have the engine located between the driver and the rear axle. The engines are a stressed member in most cars, meaning that the engine is part of the structural support framework; being bolted to the cockpit at the front end, and transmission and rear suspension at the back end.

In the 2004 championship, engines were required to last a full race weekend. For the 2005 championship, they were required to last two full race weekends and if a team changes an engine between the two races, they incur a penalty of 10 grid positions. In 2007, this rule was altered slightly and an engine only had to last for Saturday and Sunday running. This was to promote Friday running. In the 2008 season, engines were required to last two full race weekends; the same regulation as the 2006 season. However for the 2009 season, each driver is allowed to use a maximum of 8 engines over the season, meaning that a couple of engines have to last three race weekends. This method of limiting engine costs also increases the importance of tactics, since the teams have to choose which races to have a new or an already-used engine.


The gearbox with mounted rear suspension elements from the Lotus T127, Lotus Racing's car for the 2010 season.

Formula One cars use semi-automatic sequential gearboxes, with regulations stating a 4–7 forward gears and 1 reverse gear, using rear wheel drive.[5] The gearbox is constructed of carbon titanium, as heat dissipation is a critical issue, and is bolted onto the back of the engine.[6] Full automatic gearboxes, and systems such as launch control and traction control, are illegal, to keep driver skill important in controlling the car.[6] The driver initiates gear changes using paddles mounted on the back of the steering wheel and electro-hydraulics perform the actual change as well as throttle control. Clutch control is also performed electro-hydraulically, except to and from a standstill, when the driver operates the clutch using a lever mounted on the back of the steering wheel.[7]

A modern F1 clutch is a multi-plate carbon design with a diameter of less than 100 mm (3.9 in),[7] weighing less than 1 kg (2.2 lb) and handling around 720 hp (540 kW).[3] As of the 2009[update] race season, all teams are using seamless shift transmissions, which allow almost instantaneous changing of gears with minimum loss of drive. Shift times for Formula One cars are in the region of 0.05 seconds.[8] In order to keep costs low in Formula One, gearboxes must last four consecutive events, although gear ratios can be changed for each race. Changing a gearbox before the allowed time will cause a penalty of five places drop on the starting grid.[9]


The rear wing of a modern Formula One car, with three aerodynamic elements (1, 2, 3). The rows of holes for adjustment of the angle of attack (4) and installation of another element (5) are visible on the wing's endplate.

The use of aerodynamics to increase the cars' grip was pioneered in Formula One in the late 1960s by Lotus, Ferrari and Brabham.


Early designs linked wings directly to the suspension, but several accidents led to rules stating that wings must be fixed rigidly to the chassis. The cars' aerodynamics are designed to provide maximum downforce with a minimum of drag; every part of the bodywork is designed with this aim in mind. Like most open wheeler cars they feature large front and rear aerofoils, but they are far more developed than American open wheel racers, which depend more on suspension tuning; for instance, the nose is raised above the centre of the front aerofoil, allowing its entire width to provide downforce. The front and rear wings are highly sculpted and extremely fine 'tuned', along with the rest of the body such as the turning vanes beneath the nose, bargeboards, sidepods, underbody, and the rear diffuser. They also feature aerodynamic appendages that direct the airflow. Such an extreme level of aerodynamic development means that an F1 car produces much more downforce than any other open-wheel formula; for example the Indycars produce downforce equal to their weight (that is, a downforce:weight ratio of 1:1) at 190 km/h (118 mph), while an F1 car achieves the same at 125 to 130 km/h (78 to 81 mph), and at 190 km/h (118 mph) the ratio is roughly 2:1.[10]

A low downforce spec. front wing on the Renault R30 F1 car. Front wings heavily influence the cornering speed and handling of a car, and are regularly changed depending on the downforce requirements of a circuit.

The bargeboards in particular are designed, shaped, configured, adjusted and positioned not to create downforce directly, as with a conventional wing or underbody venturi, but to create vortices from the air spillage at their edges. The use of vortices is a significant feature of the latest breeds of F1 cars. Since a vortex is a rotating fluid that creates a low pressure zone at its centre, creating vortices lowers the overall local pressure of the air. Since low pressure is what is desired under the car, as it allows normal atmospheric pressure to press the car down from the top, by creating vortices downforce can be augmented while still staying within the rules prohibiting ground effects.[dubious ]

The F1 cars for the 2009 season came under much questioning due to the design of the rear diffusers of the Williams, Toyota and the Brawn GP cars raced by Jenson Button and Rubens Barrichello, dubbed double diffusers. Appeals from many of the teams were heard by the FIA, which met in Paris, before the 2009 Chinese Grand Prix and the use of diffusers was declared as legal. Brawn GP boss Ross Brawn claimed the diffuser design as "an innovative approach of an existing idea". These were subsequently banned for the 2011 season.

Since the start of the 2011 season, cars have been allowed to run with an adjustable rear wing, more commonly known as DRS (drag reduction system), a system to combat the problem of turbulent air when overtaking. On the straights of a track, drivers can deploy DRS, which opens the rear wing, reduces the drag of the car, allowing it to move faster. As soon as the driver touches the brake, the rear wing shuts again. In free practice and qualifying, a driver may use it whenever he wishes to, but in the race, it can only be used if the driver is 1 second, or less, behind another driver at the DRS detection zone on the race track, at which point it can be activated in the activation zone until the driver brakes.

Ground effects

F1 regulations heavily limit the use of ground effect aerodynamics which are a highly efficient means of creating downforce with a small drag penalty. The underside of the vehicle, the undertray, must be flat between the axles. A 10 mm[11] thick wooden plank or skid block runs down the middle of the car to prevent the cars from running low enough to contact the track surface; this skid block is measured before and after a race. Should the plank be less than 9 mm thick after the race, the car is disqualified.

A substantial amount of downforce is provided by using a rear diffuser which rises from the undertray at the rear axle to the actual rear of the bodywork. The limitations on ground effects, limited size of the wings (requiring use at high angles of attack to create sufficient downforce), and vortices created by open wheels lead to a high aerodynamic drag coefficient (about 1 according to Minardi's technical director Gabriele Tredozi;[12] compare with the average modern saloon car (sedan in the USA), which has a Cd value between 0.25 and 0.35), so that, despite the enormous power output of the engines, the top speed of these cars is less than that of World War II vintage Mercedes-Benz and Auto Union Silver Arrows racers. However, this drag is more than compensated for by the ability to corner at extremely high speed. The aerodynamics are adjusted for each track; with a low drag configuration for tracks where high speed is more important like Autodromo Nazionale Monza, and a high traction configuration for tracks where cornering is more important, like the Circuit de Monaco.


The front wing is lower than ever before.

A ban on aerodynamic appendages resulted in the 2009 cars having smoother bodywork.

With the 2009 regulations, the FIA rid F1 cars of small winglets and other parts of the car (minus the front and rear wing) used to manipulate the airflow of the car in order to decrease drag and increase downforce. As it is now, the front wing is shaped specifically to push air towards all the winglets and bargeboards so that the airflow is smooth. Should these be removed, various parts of the car will cause great drag when the front wing is unable to shape the air past the body of the car. The regulations which came into effect in 2009 have reduced the width of the rear wing by 25 cm, and standardised the centre section of the front wing to prevent teams developing the front wing.


The cars are constructed from composites of carbon fibre and similar ultra-lightweight materials. The minimum weight permissible is 640 kg (1,411 lb) including the driver, fluids and on-board cameras.[13] However, all F1 cars weigh significantly less than this (some as little as 440 kg (970 lb)[citation needed]) so teams add ballast to the cars to bring them up to the minimum legal weight. The advantage of using ballast is that it can be placed anywhere in the car to provide ideal weight distribution. This can help lower the car's center of gravity to improve stability and also allows the team to fine tune the weight distribution of the car to suit individual circuits.

Steering wheel

A modern Toyota F1 steering wheel, with a complex array of dials, knobs, and buttons.

The driver has the ability to fine tune many elements of the race car from within the machine using the steering wheel. The wheel can be used to change gears, apply rev. limiter, adjust fuel/air mix, change brake pressure, and call the radio. Data such as engine rpm, lap times, speed, and gear is displayed on an LCD screen. The wheel alone can cost about £25,000,[14] and with carbon fibre construction, weighs in at 1.3 kilograms.


The fuel used in F1 cars is fairly similar to ordinary petrol, albeit with a far more tightly controlled mix. Formula One fuel can only contain compounds that are found in commercial gasoline, in contrast to alcohol-based fuels used in American open-wheel racing. Blends are tuned for maximum performance in given weather conditions or different circuits. During the period when teams were limited to a specific volume of fuel during a race, exotic high-density fuel blends were used which were actually heavier than water, since the energy content of a fuel depends on its mass density.

To make sure that the teams and fuel suppliers are not violating the fuel regulations, the FIA requires Elf, Shell, Mobil, Petronas and the other fuel teams to submit a sample of the fuel they are providing for a race. At any time, FIA inspectors can request a sample from the fueling rig to compare the "fingerprint" of what is in the car during the race with what was submitted. The teams usually abide by this rule, but in 1997, Mika Häkkinen was stripped of his third place finish at Spa-Francorchamps in Belgium after the FIA determined that his fuel was not the correct formula, as well as in 1976, both McLaren and Penske cars were forced to the rear of the Italian Grand Prix after octane number of the mixture was found to be too high.


A BMW Sauber's right-rear Bridgestone tyre.

The 2009 season saw the re-introduction of slick tyres replacing the grooved tyres used from 1998 to 2008.

Tyres can be no wider than 355 and 380 mm (14.0 and 15.0 in) at the rear, front tyre width reduced from 270 mm to 245 mm for the 2010 season. Unlike the fuel, the tyres bear only a superficial resemblance to a normal road tyre. Whereas a roadcar tyre has a useful life of up to 80,000 km (50,000 mi), a Formula One tyre is built to last just one race distance (a little over 300 km (190 mi)). This is the result of a drive to maximise the road-holding ability, leading to the use of very soft compounds (to ensure that the tyre surface conforms to the road surface as closely as possible).

Since the start of the 2007 season, F1 had a sole tyre supplier. From 2007–2010, this was Bridgestone, but 2011 saw the reintroduction of Pirelli into the sport, following the departure of Bridgestone. Six compounds of F1 tyre exist; 4 are dry weather compounds (hard, medium, soft, and super-soft) while 2 are wet compounds (intermediates for damp surfaces with no standing water and full wets for surfaces with standing water). Two of the dry weather compounds (generally a harder and softer compound) are brought to each race, plus both wet weather compounds. The harder tyre is more durable but gives less grip, and the softer the converse. In 2009, the slick tyres returned as a part of revisions to the rules for the 2009 season; slicks have no grooves and give up to 18% more contact with the track. In the Bridgestone years, a green band on the sidewall of the softer compound was painted to allow spectators to distinguish which tyre a driver is on. With Pirelli tyres, the colour of the text and the ring on the sidewall varies with the compounds. Generally, the two dry compounds brought to the track are separated by at least one specification. This was implemented by the FIA to create more noticeable difference between the compounds and hopefully add more excitement to the race when two drivers are on different strategies. The exceptions are the Monaco GP and the Hungaroring, where soft and super-soft tyres are brought, because both are notably slow and twisty, and so additional grip is required.


Brake discs on the Williams FW27.

Disc brakes consist of a rotor and caliper at each wheel. Carbon composite rotors (introduced by the Brabham team in 1976) are used instead of steel or cast iron because of their superior frictional, thermal, and anti-warping properties, as well as significant weight savings. These brakes are designed and manufactured to work in extreme temperatures, up to 1,000 degrees Celsius (1800 °F). The driver can control brake force distribution fore and aft to compensate for changes in track conditions or fuel load. Regulations specify this control must be mechanical, not electronic, thus it is typically operated by a lever inside the cockpit as opposed to a control on the steering wheel.

An average F1 car can decelerate from 100 to 0 km/h (62 to 0 mph) in about 15 meters (48 ft), compared with a 2009 BMW M3, which needs 31 meters (102 ft). When braking from higher speeds, aerodynamic downforce enables tremendous deceleration: 4.5 g to 5.0 g (44 to 49 m/s2), and up to 5.5 g (54 m/s2) at the high-speed circuits such as the Circuit Gilles Villeneuve (Canadian GP) and the Autodromo Nazionale Monza (Italian GP). This contrasts with 1.0 g to 1.5 g (10 to 15 m/s2) for the best sports cars (the Bugatti Veyron is claimed to be able to brake at 1.3 g). An F1 car can brake from 200 km/h (124 mph) to a complete stop in just 2.21 seconds, using only 65 metres (213 ft).[15]


Grand Prix cars and the cutting edge technology that constitute them produce an unprecedented combination of outright speed and quickness for the drivers. Every F1 car on the grid is capable of going from 0 to 160 km/h (100 mph) and back to 0 in less than five seconds. During a demonstration at the Silverstone circuit in Britain, an F1 McLaren-Mercedes car driven by David Coulthard gave a pair of Mercedes-Benz street cars a head start of seventy seconds, and was able to beat the cars to the finish line from a standing start, a distance of only 3.2 miles (5.2 km).[16]

As well as being fast in a straight line, F1 cars also have incredible cornering ability. Grand Prix cars can negotiate corners at significantly higher speeds than other racing cars because of the intense levels of grip and downforce. Cornering speed is so high that Formula One drivers have strength training routines just for the neck muscles . Former F1 driver Juan Pablo Montoya claimed to be able to perform 300 repetitions of 50 lb (23 kg) with his neck. Since most tracks are clockwise, most drivers have the neck muscles built up on one side of their neck,[citation needed] thus making counter-clockwise tracks (such as Imola, Istanbul Park and Interlagos) a much more testing race than even the high speed Monza or the tight and narrow Monaco.

The combination of light weight (640 kg in race trim for 2011), power (950 bhp with the 3.0 L V10, 730 bhp (544 kW) with the 2007 regulation 2.4 L V8), aerodynamics, and ultra-high performance tyres is what gives the F1 car its performance figures. The principal consideration for F1 designers is acceleration, and not simply top speed. Acceleration is not just linear forward acceleration, but three types of acceleration can be considered for an F1 car's, and all cars' in general, performance:

  • Linear acceleration (speeding up)
  • Linear deceleration (braking)
  • Lateral acceleration (turning)

All three accelerations should be maximised. The way these three accelerations are obtained and their values are:


The 2006 F1 cars have a power-to-weight ratio of 1,250 hp/t (0.93 kW/kg). Theoretically this would allow the car to reach 100 km/h (60 mph) in less than 1 second. However the massive power cannot be converted to motion at low speeds due to traction loss and the usual figure is 2 seconds to reach 100 km/h (60 mph). After about 130 km/h (80 mph) traction loss is minimal due to the combined effect of the car moving faster and the downforce, hence the car continues accelerating at a very high rate. The figures are (for the 2006 Renault R26):[citation needed]

  • 0 to 100 km/h (62 mph): 1.7 seconds
  • 0 to 200 km/h (124 mph): 3.8 seconds
  • 0 to 300 km/h (186 mph): 8.6 seconds*

*Figures are heavily dependent on aerodynamic setup and gearing.

The acceleration figure is usually 1.45 g (14.2 m/s2) up to 200 km/h (124 mph), which means the driver is pushed back in the seat at an acceleration 1.45 times gravity.[citation needed]

There are also boost systems known as Kinetic Energy Recovery Systems (KERS). These devices recover the kinetic energy created by the car's braking process. They store that energy and convert it into power that can be called upon to boost acceleration. KERS adds 80 hp (60 kW) and weighs only 35 kg (77 lb) there are principally two types of systems, electrical and flywheel mechanical. Electrical systems use a motor-generator incorporated in the car's transmission which converts mechanical energy into electrical energy and vice versa. Once the energy has been harnessed, it is stored in a battery and released at will. Mechanical systems capture braking energy and use it to turn a small flywheel which can spin at up to 80,000 rpm. When extra power is required, the flywheel is connected to the car's rear wheels. In contrast to an electrical KERS, the mechanical energy doesn't change state and is therefore more efficient. There is one other option available, hydraulic KERS, where braking energy is used to accumulate hydraulic pressure which is then sent to the wheels when required.


The carbon brakes in combination with tyre technology and the car's aerodynamics produce truly remarkable braking forces. The deceleration force under braking is usually 4 g (39 m/s2), and can be as high as 5–6 g when braking from extreme speeds, for instance at the Gilles Villeneuve circuit or at Indianapolis. In 2007, Martin Brundle, a former Grand Prix driver, tested the Williams Toyota FW29 Formula 1 car, and stated that under heavy braking he felt like his lungs were hitting the inside of his ribcage, forcing him to exhale involuntarily. Here the aerodynamic drag actually helps, and can contribute as much as 1.0 g of braking force, which is the equivalent of the brakes on most road sports cars. In other words, if the throttle is let go, the F1 car will slow down under drag at the same rate as most sports cars do with braking, at least at speeds above 150 km/h (93 mph). The drivers do not utilise engine or compression braking, although it may seem this way. The only reason they change down gears prior to entering the corner is to be in the correct gear for maximum acceleration on the exit of the corner.[citation needed]

There are three companies who manufacture brakes for Formula One. They are Hitco (based in the US, part of the SGL Carbon Group), Brembo in Italy and Carbone Industrie of France. Whilst Hitco manufacture their own carbon/carbon, Brembo sources theirs from Honeywell, and Carbone Industrie purchases their carbon from Messier Bugatti.

Carbon/carbon is a short name for carbon fibre reinforced carbon. This means carbon fibres strengthening a matrix of carbon, which is added to the fibres by way of matrix deposition (CVI or CVD) or by pyrolosis of a resin binder.

F1 brakes are 278 mm (10.9 in) in diameter and a maximum of 28 mm (1.1 in) thick. The carbon/carbon brake pads are actuated by 6-piston opposed callipers provided by Akebono, AP Racing or Brembo. The callipers are aluminium alloy bodied with titanium pistons. The regulations limit the modulus of the calliper material to 80 GPa in order to prevent teams using exotic, high specific stiffness materials, for example, beryllium. Titanium pistons save weight, and also have a low thermal conductivity, reducing the heat flow into the brake fluid.

Lateral acceleration

As mentioned above, the car can accelerate to 300 km/h (190 mph) very quickly, however the top speeds are not much higher than 330 km/h (210 mph) at most circuits, being highest at Monza 360 km/h (224 mph), Indianapolis (about 335 km/h (208 mph)) and Gilles Villeneuve (about 325 km/h (202 mph)). This is because the top speeds are sacrificed for the turning speeds; however, this paradox was cleve


Leave a Reply

Fill in your details below or click an icon to log in: Logo

You are commenting using your account. Log Out /  Change )

Google+ photo

You are commenting using your Google+ account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )


Connecting to %s

%d bloggers like this: